

⁴ Instituto de Investigación Biosanitaria (ibs.GRANADA)

UNIVERSIDAD **DE GRANADA**

Opportunities for radiobiology at DONES

P. González-Carrasco¹, D. Guirado^{1,2,4}, M. Villalobos^{1,4}, A.M. Lallena^{3,4}

¹ Dpto. de Radiología y Medicina Física, Universidad de Granada ² Dpto. Física Atómica, Molecular y Nuclear, Universidad de Granada ³ Unidad de Radiofísica, Hosp. Univ. Clínico San Cecilio, Granada

Servicio Andaluz de Salud Consejería de Salud y Consumo

cancer incidence in the world 18,094,716 new cases in 2020

9,342,957 men (lung-15.4% / prostate-15.1% / colorectal-11.4%) 8,751,759 women (breast-25.8% / colorectal-9.9% / lung-8.8%)

cancer incidence in the world 18,094,716 new cases in 2020

9,342,957 men (lung-15.4% / prostate-15.1% / colorectal-11.4%) 8,751,759 women (breast-25.8% / colorectal-9.9% / lung-8.8%)

leading cause of death worldwide: ~10 million deaths in 2020

World Health Organization

cancer incidence in the world 18,094,716 new cases in 2020

leading cause of death worldwide: ~10 million deaths in 2020

9,342,957 men (lung-15.4% / prostate-15.1% / colorectal-11.4%) 8,751,759 women (breast-25.8% / colorectal-9.9% / lung-8.8%)

patients of cancer

individualization treatments

more than half of cancer patients undergo radiotherapy

high-energy X-rays, electrons, protons, heavy-ions

<u>more than half of cancer patients undergo radiotherapy</u>

high-energy X-rays, electrons, protons, heavy-ions

<u>absorbed dose, D</u>

 energy deposited in matter by ionizing radiation per unit mass fundamental magnitude to determine the radiation effects useful in radiation therapy, radiation protection and radiobiology

more than half of cancer patients undergo radiotherapy

high-energy X-rays, electrons, protons, heavy-ions

<u>absorbed dose, D</u>

 energy deposited in matter by ionizing radiation per unit mass fundamental magnitude to determine the radiation effects useful in radiation therapy, radiation protection and radiobiology

biological effects

•no unique relationship between D and induced biological effects they depend on: treatment fractionation, absorbed dose rate, radiation quality, tumor characteristics, tumor environment, end points, ...

more than half of cancer patients undergo radiotherapy

high-energy X-rays, electrons, protons, heavy-ions

<u>absorbed dose, D</u>

 energy deposited in matter by ionizing radiation per unit mass fundamental magnitude to determine the radiation effects useful in radiation therapy, radiation protection and radiobiology

biological effects

•no unique relationship between D and induced biological effects they depend on: treatment fractionation, absorbed dose rate, radiation quality, tumor characteristics, tumor environment, end points, ...

_How can absorbed dose and biological effects be (unambiguously) related? **fundamental question for treatment individualization**

weighting factors

<u>relative biological effectiveness (RBE)</u> ratio between absorbed doses delivered with two radiation qualities that result in the same effect in a given biological system, under

identical conditions.

one of them a reference, absorbed dose **biological effects** usually ⁶⁰Co relative biological effectiveness (RBE) ratio between absorbed doses delivered with two radiation qualities

that result in the same effect in a given biological system, under identical conditions.

relative biological effectiveness (RBE)

ratio between absorbed doses delivered with two radiation qualities that result in the same effect in a given biological system, under identical conditions.

not only cell type or radiation quality

importance of the end points

- •cell survival (monolayer / spheroids / matrigel)
- chromosomal aberrations
- molecular damage to DNA (simple- / double-strand breaks)

one of them a reference, usually ⁶⁰Co

•other molecular end-points (tumor microenvironment / metastases)

radiation protection

for workers and general public
extremely relevant at DONES

radiation protection

 for workers and general public extremely relevant at DONES

<u>equivalent dose in tissue T, H</u>

$H_{\rm T} = \sum w_{\rm R} D_{\rm T,R}$ R

Тур

Photons, all ener Electrons and m Neutrons, energ

(See also Figu Protons, other t Alpha particles,

Table 1. Radiation weighting factors¹

pe and energy range ²	Radiation weighting factor,
rgies	1
nuons, all energies ³	1
v < 10 keV	5
10 keV to 100 keV	10
>100 keV to 2 MeV	20
> 2 MeV to 20 MeV	10
>20 MeV	5
(re 1)	
han recoil protons, energy > 2 MeV	5
fission fragments, heavy nuclei	20

ICRP Publication 60 (1991)

radiation protection

 for workers and general public •extremely relevant at DONES

Table 1. Radiation weighting factors¹

pe and energy range ²	Radiation weighting factor, w _R
rgies	1
nuons, all energies ³	1
y < 10 keV	5
10 keV to 100 keV	10
>100 keV to 2 MeV	20
> 2 MeV to 20 MeV	10
> 20 MeV	5
re 1)	
han recoil protons, energy $> 2 \text{ MeV}$	5
fission fragments, heavy nuclei	20
ICRP	$\frac{1991}{2}$

radiation protection

 for workers and general public extremely relevant at DONES

chosen by ICRP • W _R = 1 for low LET radiations • W _R for other radiations according to RBE		
Table 1. Radiation weighting factors ¹		
pe and energy range ²	Radiation weighting factor, w _R	
rgies nuons, all energies ³ y < 10 keV 10 keV to 100 keV > 100 keV to 2 MeV > 2 MeV to 20 MeV > 20 MeV are 1) han recoil protons, energy > 2 MeV fission fragments, heavy nuclei	1 1 5 10 20 10 5 5	
ICRP Publication 60 (1991)		

RBE of neutrons

neutrons in clinics

<u>neutrons in clinics</u>

high-energy beams used in radiotherapy produce neutrons •they increase the_dose absorbed to tissues outside the target volume •they may compromise critical organs they show acute toxicity and may produce late complications in patients

neutrons in clinics

high-energy beams used in radiotherapy produce neutrons they may compromise critical organs

for cancer induction.

- •they increase the_dose absorbed to tissues outside the target volume
- they show acute toxicity and may produce late complications in patients

due to their_high RBE values, even small neutron doses are relevant

<u>neutrons in clinics</u>

high-energy beams used in radiotherapy produce neutrons they may compromise critical organs

for cancer induction.

- •they increase the_dose absorbed to tissues outside the target volume
- they show acute toxicity and may produce late complications in patients

•due to their high RBE values, even small neutron doses are relevant

large uncertainties in RBE are in this case critical for obvious reasons

<u>neutrons in clinics</u>

high-energy beams used in radiotherapy produce neutrons they may compromise critical organs

for cancer induction.

•X-ray machines up to 12-15MV are used, but hadrontherapy

- •they increase the_dose absorbed to tissues outside the target volume
- they show acute toxicity and may produce late complications in patients

•due to their_high RBE values, even small neutron doses are relevant

large uncertainties in RBE are in this case critical for obvious reasons

requirements for the radiobiology lab

proximity of PTS

requirements for the radiobiology lab

proximity of PTS

of the response

some techniques do not permit culture transport because of the rapidity

requirements for the radiobiology lab

proximity of PTS

of the response

- minimal equipement required: -laminar flow cabinet
- -vacuum pump
- -CO₂ incubator (with pH-meter)

-inverted phase constrast microscope

- -basics elements for maintaining and manipulating cell cultures
- -cell culture media, consumables, ...

-TLD dosimetry system

some techniques do not permit culture transport because of the rapidity

<u>conclusions</u>

- that can be transferred to clinical and radiation protection practices.
- the response of cell cultures to irradiation provides valuable information measurement of different endpoints is required.
- neutron (and deuteron) beams available at IFMIF-DONES will open the possibility of analyzing situations never investigated before.
- •the new beams would complete the radiobiological information obtained by using the electron clinical accelerators of the nearby hospitals and the X-ray irradiation facilities available at CNA or CIC-UGR
- •IFMIF-DONES is an excellent opportunity to expand our knowledge about neutron RBE and to study the cell response to both neutrons and deuterons at the energies that will be available.

