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J-PARC RaDIATE '

J-PARC participated in RaDIATE collaboration in December 2017
® Beam window for T2K

® Target materials for pion/muon production

® DPA cross section measurements,,,

Mostly, thanks to US-
JP collaboration

Transition from individual activities by volunteer-based members to
J-PARC-wide mission led by the director of J-PARC Center

J-PARC-wide activities:

Irradiation damage studies in Targets, beam windows, and beam-intercepting
components in the entire Experimental & Accelerator facilities.

* Not only the official RaDIATE activities but also any radiation damage studies
* Quarterly core-members meeting

« Some budget is allocated for the activities.
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Targets & Beam windows at J-PARC
ALY -

‘ W 7 ) el S accelerator-drlven
N - SRR 0 Y RS fransmutation systems

(ADS): Pb-Bi
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Neutrino [v]
He-cooled graphite

Graphlte (P1), SiC (P1 5), >
W (P2) [COMET]

3D prlnted Ti-6Al- 4V BW

Hadron [HEF]
Water cooled gold/ high-Z
rotating target

Beryllium BW
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Outline

Tungsten alloy for muon target

Titanium alloy for neutrino beam window
SS 316L for neutron target
Superconductor for magnet

Summary
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1. Tungsten alloy for muon target



Tungsten is expected as target materials ‘

8-GeV (MuZe) Stopp|ng

AT Target (Al) ” = |
T o == O\l n!\

— ' -
\-7 ‘.~.----—-’ . /
: .'./ \L\»:- Detector Solenoid

(negative muons are
Transport Solenoid stopped, registration
(converts pions to muons, of electrons)

MuZ2e target @FNAL removes background)

EFE@EiEa :
_ Production Target and

Production Solenoid
(produces pions and muons)

a

R

» Higher density: smaller spatial volume of pion
COMET Phase 2 @J-PARC » High melting point

Mu2e / COMET P2 / | |
Early-stage COMET P2 | Upgrade Mu2e W target in future physics
« J-PARC MLF 2nd Target S
Proton beam 8 GeV, 8 kW 8 GeV, 56 kW . J-PARC Hadron target

Target material  Rad. cooling tungsten Water cooling tungsten fl> « ORNL 2nd Target S

Target thickness 160 mm 160 mm « ESS Neutron source
* Anti-p+ target at CERN

 Positron source at ILC
COMET-MuZ2e collaboration has been launched. * Muon collider etc.
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Time structure 0.4 s. extra.in 1.2/1.4s. (0.5 s. extra. in 2.5 s.)



Recrystallization embrittlement & Irradiation embrittlement

v Tungsten is brittle, because grain boundary is weak.

W, bending test, T, . = 250-300°C

W-10Re, bending test, T, = 250-300°C
Densimet 18, bending test, T, == 250-300°C
W, tensile test, Tj.r . = 100°C

O

<
v Brittleness is improved by heavy plastic working. hd
e W, tensile test, Tirr = 371-382*C
tH

v Revert to the brittle material at recrystallization
temperature (1200 "C at Pure W)
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T J Reiser et al. INM, 423 (2012) * _ Plastic working
e Brittle
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K

Ductile
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b

0 25 50 75 100
Fluence, 10%* n/m? (E>0.1 MeV), 1 dpa ~ 5 10% n/m?

Ductile to Brittle Transition Temperature, °C
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G. Pintsuk et al.

10 mm

arget

Recrystallization embrittlement Irradiation embrittlement

diation

ccelerator

To overcome recrystallization & irradiation embrittlement, TFGR-W, based on powder
metallurgy, has been developed under academia-industrial collaboration in J-PARC.




w . . . . o
Toughened Fine-Grained Recrystallized Tungsten (TFGR-W-TIC) ,
-
< _ _ . Mater. Sci. Forum, Spallation Materials
v'Equiaxed and Fine-grained Technology, 1024(2021)103-109
@ v Grain boundaries are reinforced by titanium | Recrystallization embrittlement
. . . g Pure tungsten, cut from a forged rod i e T TR
_J} carbide through grain boundary sliding | ;Ojot omaforgedrod | 1o —wawa s
_J v'Manufactured by powder metallurgy g 2500 ey o |0Smm/min
S 2,000 {\nneal at 1600 SforZhours
. % 1500 in pressure of 10~ Pa
£ 1,000 -
500 | | i~
g,/ VA1V
5 0.00 0.10 020 030 040 050 060 070 0.80 0.90

Deflection (mm)

—TFGR-1 —TFGR-2 ~—TFGR-3 —TFGR-4 ~—TFGR-5 ~—TFGR-6

3,000
2,500
2,000
1,500
1,000

500

TFGR W-1.1%TiC

Bending Stress (MPa)

0.00 0.10 020 030 040 050 060 070 0.80 0.90
Deflection (mm)




Then, irradiation resistance ?

v’ Irradiation results has not been obtained

v’ But the sign of high irradiation resistance exists.

v High sink-site with fine-grained and semi-
coherent grain-boundaries between W and TiC

Mo-1.0%TiC: Radiation Induced Ductilization,

Y. Kitsunai et al., JNM, 239, (1996)
Neutron irradiation: 573-773 K, 0.1 dpa
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Fig. 11. Comparisons of average areal loop density, loop area, and total damage (loop
density x loop area) as a function of dpa for the in-situ 1 MeV Kr*? irradiated CGW and
W-TIiC (1.1%) sample at 1073 K. Error bars are included to reflect errors in quantifying

“In-situ irradiation tolerance investigation of high strength
ultrafine tungsten-titanium carbide alloy“, LANL group.
O. El-Atwani et al., Acta Materialia 164 (2019) 547e559
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TEFGR W-TiC

® Included in HRMT48 for AD-target
design, Ir, Ta, TFGR,,,

® No noticeable damage

® Promising response

POT: 3.2X10%3~1.12X 1014
Beam size: 1mm X 1 mm

50 pulses, pulse duration 25 ns
dT=700°C,

Tensile stress: 1 GPa

HRMT 60 under
RaDIATE collaboration

More than 100 specimens were

irradiated at HRMTG60.

» Tialloys from BLIP capsule

» Novel materials: TFGR-W,
HEAs, Ti alloys, NITE SiC/SiC,,,

10
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He embrittlement in high energy proton irradiation

Condition

Embrittlement

Source DPA/s appm/DPA Temp (°C . C : :
( ) (@pp ) P(C) larger helium than fission & fusion materials.
Mixed spectrum ) » _ _
fiesion reactor 3 X 107 1x10 200-600 v He bubble formation leads fatal embrittlement
Fusion reactor 1 x 10 1x 10" 400-1000 In high temperature.
: v So far, no one could solve He embrittlement.
F)Hrftgfgee;g% 6 x 103 1x10° 100-800
, 3 ; ek 2 wist Penghui Cao et al. .
Bei"or_e Early S_tage of After High a ‘. : O p
Irradiation | uar Irradiation Fluence “ N, CNT c i »
) Temperature Irradiation © L, s 3 i = 0.010 L _ -7 PureAl
) Region Irradiation SIS 0 dum 8 )
), Hardening - = P
— /' Irradiation C| e e B 5 ooos) e "
g Embrittlement s £5 0 S I "
(DBTT Shift) ~ P RE o RS S e AR
A u“ . ‘;“) ;1(‘)-6nm . - AI-CNT composite
\ _ — - _ 00 02 o4 0.6 0.8
Higher —l Pure Al AI-CNT composite DPA
Temperature
-Reglon Void Swelling Recently, it was reported “Carbon nanotube (CNT) Al
fStU_d'eS n composites exhibit greatly reduced He bubble formation”,
usion
materials High These concepts were applied to tungsten under
A. Hasegawa Lonng 3 Yol o, o o Heltam collaboration with J-PARC, FNAL, and BNL.

11



Preliminary results in W-CNT

® W-CNT & W-TIiC-CNT was manufactured

ol inJ-PARC.
| ® Multi wall carbon nanotubes ‘
8 ® Manufactured with powder metallurgy
: _ , To form He bubble, samples
® Density (g/cc): W-CNT 16.96, W-TiC CNT 16.018 were irradiated by He ions in
HIT Tokyo Univ.
«
= W-CNT
(o]
E c
o
= W-TiC-CNT
= Red: W, Green: C

TEM analysis in BNL
 EDS shows carbon clusters
 However, many pores exists. Improvement is necessary.
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New technique: Helium embrittlement study w/o particles irradiation °

So far, to study Helium embrittlement,
® High energy proton or neutron irradiation: Samples are heavily activated.

® Helium and heavy ion irradiation: Damage is localized. Hardness testing or TEM.

Recently, we established a new technique to introduce helium bubbles in bulk tungsten material.

c
v
o
©
S
©

T. Sakamoto et al., Vacuum 228 (2024) 113482

® Mechanical alloying was conducted in -_m Be“d'"g strength _

°

X helium atmosphere. Tatm  wt% wt%

g4 ® Helium can be replaced with hydrogen.  Ar 0.84 0.097 438 Trial run
g ® W w/o impgrity O, & N, showed a He 0.18 0.13 1380 Low vacuum
o lower bending strength. _
v He 0.039 0.015 1188 High vacuum

® Further studies are necessary. -
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2. Titanium alloy for Neutrino beam window

Materials are supplied by T. Ishida
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w 1 - ! - - Press release Nov. 2020: “Why Does Titanium Alloy Beam
- Rad |at|0n damage StUd €S INn Tl_al onS Window Become Brittle After Proton Beam Exposure ?” T
< Ti-6AIl-4V: widely used in industry

- ® Used in T2K beam window (B.W.)

® Will be used in LBNF B.W.

[=]

© _

o PIE at PNNL

“ 0.1 DPA ( < 0.7 dpa@ 500 kW beam operation)

= 1250 <&

: B Ti-6Al-4V |
c\c 1000| 4 " » \
o = § After Before
e S 750 Irradiation Irradiation
£ ?
:2 5 500 Uniform elongation | Gradual curve:
5 after irradiation Ductility inhibits
= o 250 :0.1~0.2% :
< From the results of p+ irradiation at BNL crack propagation. | .
P> and Post-Irradiation Exam (PIE) at PNNL, 0/ - 5 0 w-phase

We found Strain (%) = Elongation=-Gauge length
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The Ti-6Al-4V loses their ductility after slight irradiation by rad.-induced @w-phase.
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. [ ] [ ] [ ]
And what do we do? — First choice, Ti-15-3-ST2A - I\
’ 1600 . " . . . .
0.95DPA Promising sign at BLIP irradiation

< e T O The small ductility remained in Ti-15-3-STA after 0.95 dpa.
- . N, oo O In the upgrade of 1.5-MW beam, 2 dpa, Higher radiation
o resistance is needed.

@ :w, £ nresseve Nano-size precipitation by thermal treatment will absorb

N > uniform elongation = 1.5% irradiation damage. _
s ~ /" Ti-15V-3Cr-3sn-3Al _ Ti-15-3-ST2A
Solution-Treatment and Aged (STA) Ti-15-3-STA 2 t .

.2 2 - ; : : . (1 step aging) ( Slep agmg)
- E TR 30 _30 dll)a o 'Ave'rag'e '(GI;a)_g

0 i . @300°C I 525 ]
g.; ‘ 20 - Unirr. : 5.05 —
£l 0 E
© = 0 F 5

o = 10.0 dpa Average (GPa) ]

- 0 @300°C s e

“| Beam profile monitor —_—

diation

celerator

® Local damage: Nano-hardness testing =—
® High DPA, no activation

20 Unirr.-5.13
10°¢ ErFFFLﬂjiqu é
: O PP | P B S T [ P PR

3 4 5 6 7 8
Nano-hardness (GPa)

Heavy ion irradiation at HIT, 10 dpa ST2A showed higher resistance.

16




J Contrasting Irradiation Behavior of Dual Phases in Ti-6Al-4V '\
g At Low-Temperature lon Irradiation N Phase
< g :

. L . . 1x1023m:3
Phase-dependent irradiation behavior of Ti-% Py

64 by Fe2*ijon beam at RT

Nano-indentation hardness increases at 1
dpa and stays constant up to 11 dpa, due
to the saturation of tiny defect clusters in
the dominant a-phase 0 2 4 6 8 10 1

Contrary more than two orders fewer Displacement Damage [dpa]
dislocations in the p-phase

Much less dislocations and absence of phase
transformation in B-phase could be attributed to a
strong sink effect or anomalous point defect
recombination both originated from

the w-phase precursor

o
RO
.

2 03nm BT
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Nano Hardness
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sub-nanometer-sized
* Published in Journal of Alloys and Compounds  homogeneous lattice
disorder within

https://doi.org/10.1016/j.jallcom.2024.174701 mother B-matrix

https://arxiv.org/abs/2405.00517



https://arxiv.org/abs/2405.00517
https://doi.org/10.1016/j.jallcom.2024.174701
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Phase Transformation of o-phase
Precursor in a Metastable B Titanium
Alloy under lon Irradiation at RT

= Irradiation effects on phase transformation of ®
phase and its precursors in a metastable 3 Ti-15V-
3Cr-3Sn-3Al (Ti-15-3) to improve material properties

= Upon irradiation at RT, high number density
nanoclusters corresponding to w-like embryos
formed from the precursor caused lattice disorder
and developed with irradiation

= With continued irradiation, the w-like embryos
gradually disappeared, and dislocation loops were
observed

= While irradiation hardening hardly occurred through
irradiation

E. Wakai, T. Ishida, et al, HPTW2023, Riken, Nov.7.2023



lon Beam irradiation Experiments AN

+ Dual (Fe2+/He2+) beam irradiation at HIT (March 2024)
» 40 appm-He/dpa

+ Triple (Fe3+/H+/He+) beam irradiation at TIARA (June 2024)
» 400 appm-H/dpa, 100 appm-He/dpa

3MV TANDEM: 400keV ION  3MV Singleend
Fe3+ Implanter: H+ Accelerator: He+

QST-TIARA Tripple lon Beam Irradiation

~~~~~




Micro-structural control on Ti-15-3 ST2A for
damage-tolerant beam window fabrication

Despite successful prototype production, the coarse and uneven
microstructure of the material was a challenge to improve

Change of the thermo-mechanical process, which applies fast strains at high
temperatures, has resulted in a finer, equiaxed microstructure

R abDIlAT
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Launch of collaboration between KEK and NIMS on
Thermo-Mechanical Processing on Ti-Alloys
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Specimen Foil Fabrication for Meso-scale Ultrasonic

Fatigue Testing (Collaboration with UK)

Irradiate small “mesoscale” specimens of
candidate radiation-resistant titanium alloys
with proton beams (and helium) at the cyclotron
accelerator of Univ. of Birmingham

Carry out high-cycle fatigue strength
measurements using ultrasonic vibration, at
UKAEA-Material Research Facility(MRF)

Expected to lead to an assessment of the
service life of targets, windows at J-PARC
HyperK/Fermilab LBNF

Provide candidate grade materials, such
as Ti-15-3 ST2A/ST, DAT54....

R&D to fabricate both-side polished
150um-thick disk, cooperation with NIMS
sample production experts / a NADCAP-
certified company
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3. SS 316L for neutron target

Materials are supplied by T. Naoe
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$%J-PARC °

= Ised llati
J-PARC pulsed spallation neutron source I\
[
< 3 GeV Synchrotron 50 GeV Synchrotron Hadron experimental facility Pulsed neutron source in the world
—_ \ Highest in the world
v 17.8
& 400 MeV Linac % 20 Proton beam power per pulse
y Q. is 1.2x higher th N
© 1 MW 25 Hz 8;_ 15 is 1.2x higher than SNS
£a 10 8
. Neutrino experimental facility/ 50 m 8 E
— = ﬁ
: S — = 1 MW
” Materials and Life science ” 0 (202
= experlmen’FaI Facility (MLF) Japan US K
c < L J-PARC  SNs SIS
= Heliurh sl 4 ] Mercury target Tungsten target
= " = ~ I ::"'m.'l
© c ; g5 e & AT Mercury target . .
E - S ® Liquid mercury tar
) Moderators & qu d mercu y fa get

Cooling performance, Neutron yield
® Pulsed proton beam
1 MW, 25 Hz, 18x10'2 n/(sr-pulse)
® Provides pulsed neutron beams to beam lines, operate
156 days/year and 1000 users/year

[
Proton beam
window

Pulsed proton beam
3 GeV 25 Hz

' t‘:f"r-

)
()]
(=)}
—
©

diation

ccelerator

Stable operation is strongly required. -




o Mercury target vessel for spallation neutron source

o
-
104 e T91TEF-T
[’ a StainlessESS|[ T T
| Iron ]
Mercury target vessel S e
Total length: 2 m z
Total weight : 1.6 ton _2 SNS
Material : 316L SS =
i 108 | Hydrogen 4
Q _________________________________________ - - -
S
£ B
S _m
o .
2 -
- Helium
2 el :
s 5 3 3.5

Vessel interior surfac

= Incident proton energy, GeV

w S Y. lwamoto, et al., J. Nucl. Sci. Technol. 51 (2013)

Ez ® Beam energy of J-PARC (3 GeV) is ca.3x higher than that

X3 @ Target vessel which embrace liquid mercury target of the SNS (1 GeV), which has the excellent PIE data

3 & is made of 316L stainless steels with TIG welding ® Higher proton beam energy >> higher Hydrogen and

Ow : Helium production

= @ |nterior surface of the vessel was hardened by : . .

© - Kolsterisi kind of low t { burizi ® Since the effects of gas production on mechanical

© E olSterising a |n. O_ oW empera ure carburizing properties are unclear, PIE for 3 GeV irradiated materials
= to reduce the cavitation erosion caused by beam are required but much difficulties for PIE are remaining in
= induced pressure waves J-PARC
v ® Total dose for 2 years operation is planned 7dpa ® Effect of gas production on mechanical properties is

evaluating by ion irradiation with indentation technique 24

4%J-PARC
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Materials and conditions for ion irradiation tests ~™ MR.C’ .

Specimen
Base material: SS 316L (structural material for target vessel) SS 316L, cross sections of welded 316L and Kolsterising

W2 xL7xt0.7 mm

wt.% C

SS 316L 0.022 [0.26 [1.42 [0.03 |<0.001[10.1 | Temperature
200degC (max temp. on vessel at 1MW operation)

Conditions
HIT@Univ. Tokyo
Single: Fe2+, 2.5 MeV, 2.5 nA,
1,3,5,7,10dpa

R abDIl ATE

» Dual(planned): 5 dpa and various He appm

£ TIARA@QST Takasaki

£ Triple: Ni3+, 12 MeV, 28 nA 5.4 dpa
= H+ 0.38 MeV, 3.5nA 4800 appm
S He+ 1.05 MeV, 8.0 nA 1000 appm
EISEtron beam welded 316L
S 1 ; — 0.14

& Liax 10.12
£ =260, Jo-
o4 T max g lo0s T
= Hu: Universal hardness [GPa] z 10.06 »
=40 (HMT:Martens hardness [N/mm?]) § 1004

S 10.02

() E 0

@ ) S ST S A 1-0.02

v 0 0.2 0.4 0.6 0.8 1 1.2

§) Depth, um

Calculate damage distribution for HIT 7 dpa experiment 5
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Hardness after ion irradiation at HIT - MR.G .

HRE015THHER(E, HITT
BB ©oTLAEH
30mNIE, HEFRETINE
THDBHHBRTT—2 %5
BLTLS5MH

w
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® Surface hardness change was measured using Bekovich
indenter by depth control (0.15um) and load control (30 mN)

® Planning to obtain L-D curves by spherical indenter for inverse
analysis to predict mechanical properties from indentation




$%J-PARC *

[ ]
Data analysis and future plan U\
Mechanical properties prediction by inverse analysis i r=1.0um . . . oo
e . . i Inverse analysis for material properties prediction
ptimization of mechanical properties ;
Load, Load/Depth —_ - T. Wakui, et al., J. Soc. Mat. Sci., Japan 51 (2002)
. ' Layer 1 o-yl,Al,n1
Experiment Simulation1 Reaction force E i Layer 2 Gy Apy 1y - T. Naoe, et al., J. JSEM, 5 (2005)
3 1Disp|acement 7 ' Layer 3 Oyp Ay s - M. Futakawa, et al., J. JSEM, 4 (2004)
s ‘ i Layer4 CypAypNy
E i - Naoe, et al., Int. J. JISME A, 48 (2005)
i Substrate Oy 5 Ajg, N5
Specimen Depth : (Layer 5)
@ Constitutive equation '\ ' i
< o=Fg, o=fo0o . . . . ..
e ’ Multilayer model for ion irradiation
c < o= A(80 - 8)n7
o & g0 = (0y/A)'" = (0y/E), ® Compare the experimentally obtained load and depth curve
5e el o o > 0y and FEM result, and optimize material properties in the
oy : Ylela stress . . . y . .
S A: Work hardening cocffcint constitutive equation for FEM model by Kalman' s filter with
n: or ardening exponen . . . . .
_o \ J iterative simulation to close the experimental result
© Indent ® Multilayer model can be adopted to consider the thin
w m /\ E surface layer hardness change by ion irradiation
> ~ ® Spherical indenter which continuously changes the contact
Specimen  Replica FEM angle to the specimen surface is used for this method, but
']}'oer"‘a'CT:;h;‘“E' Optimization of mechanical properties now procedure for Berkovich indenter is under developing
under developed Depth, Shape, Pileup for actual PIE test in Hot-cell >7
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4. Superconductor for magnets

Materials are supplied by M. Yoshida
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Neutron Irradiation Tests on ReBCO conductor I\

M. Yoshida, M. lio and J-PARC Cryogenics Section

2x GM-refrigerators

Busbar

w
[
<
-
[=]
©
[:4

= Aim to characterize the neutron Vacuum _==— = Electrode =
. . . . . Vessel | ‘
irradiation effects of the practical high .. ﬂ ﬂ Elctic =
temperature superconductor, ReBCO Radiation | REBCO ‘

Shield ™|

s Neutron irradiation at JRR3 and BR2 2nd Stage
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Summary I\

B J-PARC RaDIATE is organized to tackle radiation damage studies for

each experimental facility.
B |[nvestigation in Tungsten alloy, titanium alloy, SS316L, superconductor,

and other materials are in progress.
B Your collaboration is welcome.
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