

Plans and developments for fundamental and particle physics at the European Spallation Source

MATTHIAS HOLL

2024-10-02

The European Spallation Source

- Currently under construction in Lund, Sweden
- Upon completion the world's brightest spallation neutron source
- Beam on target 2025, user operations 2027
- Broad range of research:
 - Chemistry
 - Material Sciences
 - Life Sciences
 - Fundamental and Particle Physics
- Currently no beamline for particle physics
 - Has been identified as a capability gap of the highest priority¹

¹<u>https://europeanspallationsource.se/instruments/capability-gap-analysis</u>

Beam Production at ESS

Neutrino Experiments at ESS

Coherent elastic neutrino-nucleus scattering (CEvNS)

- Low-energy v scatters off nucleus as a whole
 - Coherent contribution from all nucleons
 - Enhancement of the cross-section ($\sim N^2$)
 - Nuclear recoil (<few keV) only observable
- Relevant for studies of
 - Properties of neutrinos and neutrino interactions
 - Nuclear structure and astrophysics
 - Dark matter searches
- ESS: Complementary technologies to minimize systematic effects
 - Cryogenic Csl
 - TPC (Ar, Xe and Kr)
- Project funded, space at ESS required

Neutrino Experiments at ESS

ESS Neutrino Super Beam (ESSvSB)

- Proposed accelerator long baseline neutrino experiment at ESS
- Search for CP violation in the leptonic sector with high precision
- Significant addition to ESS facility
 - Requires upgrade of ESS accelerator
 - Neutrino production target station needs to be built
 - Near detector close to the target station
 - Far detector in the north of Sweden
- Supported by 2 European INFRADEV grants
- CDR published, TDR to be completed by 2028

The HIBEAM Beamline

Search for neutron-antineutron conversions

The HIBEAM Beamline

Status

- Located in east sector of ESS experimental hall
- Construction of neutron extraction system has started
- Full design of radiation shielding
- Possible start of measurement: 2029
- Expected sensitivity from McStas simulations
 - 10¹² neutrons, <*E*>=5.7 meV (~1000 m/s)
 - $t^2 \sim 2.5 \times \text{current limit/year}$

Sterile Neutron Searches @ HIBEAM

Induced instead of free oscillations

- Neutron is one of the few possible portals to a hidden/dark sector ("sterile" neutron)
- If n' exists, it can be produced by neutron to sterile neutron oscillations
 - Possible explanation for neutron lifetime anomaly ("beam" vs. "bottle")
- A sterile neutron may be affected by a sterile magnetic field B'
 - Presence of *B*' and *B*_{lab} will suppress conversions unless *B*'≈*B*_{lab}
- Magnetically controlled beamline required
 - -1 G < *B*_{lab} < 1 G
 - 2 mG accuracy

- Axion: Low-mass dark matter candidate
- Ramsey experiment
 - Axions act as a pseudomagnetic field
 - Change in Larmor frequency due to axions
- Direct search sensitivity improvement by 2-3 orders of magnitude
 - Indirect searches have model dependence
- Could be first ESS particle physics experiment
 - Most of the equipment already available

Stadnik et al, arXiv:2404.15521 [hep-ph] (accepted to PRL)

Cryogenic Neutron EDM U.S./European Initiative

- UCNs produced in situ in superfluid ⁴He
 - high UCN density in measurement cell
 - ⁴He also used as scintillator
 - ³He injected as polarizer and spin analyzer
 - Sensitivity below 3.10⁻²⁸ e-cm
- Mostly developed by US DOE and NSF
 - funding terminated in 2023 with construction underway
- Planning a sequence of preparatory demonstration measurements at ILL
- Could run as part of general purpose particle physics beamline at ESS
 - e.g. after HIBEAM

The NNbar Experiment 2035+

NNbar Sensitivity

Aim: Increase current sensitivity limit by 1000

- Concept of a liquid D₂ moderator developed
 - high intensity of slow neutrons
- Large angular acceptance: The Large Beam Port (LBP) at ESS is a worldwide unique facility and accepts neutrons with an emission angle ±5°
- Reflector system: Large-scale nested neutron mirrors

Santoro et al, JNR, vol. 25, no. 3-4, pp. 315-406, 2023

Summary

- Upon completion the world's brightest spallation neutron source
- Proposed fundamental science program consists of neutrino and neutron experiments
- Exciting possibilities for fundamental physics at ESS
 - Short term: CevNS, HIBEAM
 - Long term: NNBAR, nEDM @ HIBEAM, ESSvSB
- New ideas and collaborators welcome!

Thank you for your attention!